Compression2: compressed sensing with compressed coil arrays
نویسندگان
چکیده
Background Imaging with large coil arrays is desirable for rapid imaging and high signal to noise ratio. Compressed sensing (CS) is a promising way to accelerate myocardial perfusion imaging [1]. However with increasing number of coils CS is costly in terms of memory and computation time. Coil compression methods for reconstructing cardiac cine data with parallel imaging have been proposed [2,3]. Unlike previous methods, here we employ a coil compression method with a CS reconstruction combined with a coil-based streak suppression method. The approach is tested on undersampled radial myocardial perfusion data.
منابع مشابه
Highly-Accelerated Real-Time Cine MRI using compressed sensing and parallel imaging
Introduction Breath-hold cine MRI with balanced steady-steady free precession (b-SSFP) may yield non diagnostic image quality in patients with impaired breath-hold capacity and/or arrhythmias. In such patients, it may be necessary to perform real-time cine MRI. Currently, dynamic parallel imaging methods, such as TSENSE [1] and TGRAPPA [2], can be used to achieve only moderate acceleration rate...
متن کاملA Block-Wise random sampling approach: Compressed sensing problem
The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملCombination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI.
First-pass cardiac perfusion MRI is a natural candidate for compressed sensing acceleration since its representation in the combined temporal Fourier and spatial domain is sparse and the required incoherence can be effectively accomplished by k-t random undersampling. However, the required number of samples in practice (three to five times the number of sparse coefficients) limits the accelerat...
متن کاملAccelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k
Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...
متن کاملDistributed Compressed Sensing for Accelerated MRI
INTRODUCTION: Compressed sensing has recently been introduced as a powerful method to reduce the number of required samples by exploiting signal compressibility [1,2]. Application to MRI was proposed for reconstruction of images that have a sparse representation in a known transform domain (e.g. wavelets) from randomly undersampled k-space data [3]. The maximum acceleration is limited by the im...
متن کامل